
ASIACRYPT 2014

Compact VSS and Efficient Homomorphic UC
Commitments

Ivan Damg̊ard, Bernardo David, Irene Giacomelli and Jesper B. Nielsen

Aarhus University

Compact VSS and Efficient Homomorphic UC Commitments 1 / 21

Road-map:

1 Verifiable Secret-Sharing Scheme (VSS)

I based on any Linear Secret-Sharing Scheme (LSSS);
I compact: many secrets shared in one execution
−→ communication rate O(1);

2 Homomorphic UC Commitment Scheme

I based on the VSS in a “MPC-in-the-head” setting [IKOS07, IPS08];
I designed in the OT-hybrid model using preprocessing;
I efficient: −→ linear comput. complexity for the receiver.

Compact VSS and Efficient Homomorphic UC Commitments 2 / 21

Road-map:

1 Verifiable Secret-Sharing Scheme (VSS)
I based on any Linear Secret-Sharing Scheme (LSSS);
I compact: many secrets shared in one execution
−→ communication rate O(1);

2 Homomorphic UC Commitment Scheme

I based on the VSS in a “MPC-in-the-head” setting [IKOS07, IPS08];
I designed in the OT-hybrid model using preprocessing;
I efficient: −→ linear comput. complexity for the receiver.

Compact VSS and Efficient Homomorphic UC Commitments 2 / 21

Road-map:

1 Verifiable Secret-Sharing Scheme (VSS)
I based on any Linear Secret-Sharing Scheme (LSSS);
I compact: many secrets shared in one execution
−→ communication rate O(1);

2 Homomorphic UC Commitment Scheme
I based on the VSS in a “MPC-in-the-head” setting [IKOS07, IPS08];
I designed in the OT-hybrid model using preprocessing;
I efficient: −→ linear comput. complexity for the receiver.

Compact VSS and Efficient Homomorphic UC Commitments 2 / 21

Packed Linear Secret-Sharing Scheme among n players

Sharing Phase:

dealer D

secret

s ∈ F`

share c1 ∈ F to player P1

share c2 ∈ F to player P2

. . .

share cn ∈ F to player Pn

Reconstruction Phase:

share c1 ∈ F
share c2 ∈ F

...
share cn ∈ F

 −−−−−→ s ∈ F`

t-privacy

Any set of at most
t shares gives no
info on s

r -reconstruction

Any set of at least
r shares fully
determines s

1 ≤ t < r ≤ n

` = secret length
(` > 1)

Compact VSS and Efficient Homomorphic UC Commitments 3 / 21

Packed Linear Secret-Sharing Scheme among n players

Sharing Phase:

dealer D

secret

s ∈ F`

share c1 ∈ F to player P1

share c2 ∈ F to player P2

. . .

share cn ∈ F to player Pn

Reconstruction Phase:

share c1 ∈ F
share c2 ∈ F

...
share cn ∈ F

 −−−−−→ s ∈ F`

t-privacy

Any set of at most
t shares gives no
info on s

r -reconstruction

Any set of at least
r shares fully
determines s

1 ≤ t < r ≤ n

` = secret length
(` > 1)

Compact VSS and Efficient Homomorphic UC Commitments 3 / 21

Sharing Phase in LSSS:

LSSS ←→ a n × (`+ e) public matrix M

1 D chooses f =



|
s
|
|
v
|


← the secret, column vector in F`

← the randomness, column vector in Fe

2 D computes

c[1]

|
c[n]

 = M · f and sends c[i] to Pi

Compact VSS and Efficient Homomorphic UC Commitments 4 / 21

Sharing Phase in LSSS:

LSSS ←→ a n × (`+ e) public matrix M

1 D chooses f =



|
s
|
|
v
|


← the secret, column vector in F`

← the randomness, column vector in Fe

2 D computes

c[1]

|
c[n]

 = M · f and sends c[i] to Pi

Compact VSS and Efficient Homomorphic UC Commitments 4 / 21

Security: the players’ point of view

What happens if the dealer is not honest?!

dishonest dealer

secret

???

share c1 to player P1

share c̃2 to player P2

. . .

share c̃n to player Pn

share ci1 ∈ F
share ci2 ∈ F

...
share cir ∈ F

 −−−−−→ s ∈ F`

share c̃j1 ∈ F
share c̃j2 ∈ F

...
share c̃jr ∈ F

 −−−−−→ s̃ ∈ F`

Compact VSS and Efficient Homomorphic UC Commitments 5 / 21

Definition of VSS Scheme [CGMA85]

A (t, r)-LSSS among n players is verifiable if

t-privacy: no info
from t shares

Pi1

Pi2
...
Pit

 −→ ?

r-robust reconstruction: when the
dealer is corrupt,

the sharing phase succeeds
⇓

any set of r honest players reconstruct
the same secret

For any {i1, . . . , ir} 6= {j1, . . . , jr}, if

Pi1
Pi2
...
Pir

 −→ s ∈ F` and

Pj1
Pj2
...

Pjr

 −→ s̃ ∈ F`

=⇒ s = s̃

Compact VSS and Efficient Homomorphic UC Commitments 6 / 21

Definition of VSS Scheme [CGMA85]

A (t, r)-LSSS among n players is verifiable if

t-privacy: no info
from t shares

Pi1

Pi2
...
Pit

 −→ ?

r-robust reconstruction: when the
dealer is corrupt,

the sharing phase succeeds
⇓

any set of r honest players reconstruct
the same secret

For any {i1, . . . , ir} 6= {j1, . . . , jr}, if

Pi1
Pi2
...
Pir

 −→ s ∈ F` and

Pj1
Pj2
...

Pjr

 −→ s̃ ∈ F`

=⇒ s = s̃

Compact VSS and Efficient Homomorphic UC Commitments 6 / 21

Known constructions from LSSS to VSS

in [BGW88] → verifiable version of Shamir’s LSSS
(only secrets of length 1!)

in [FY92] → packed version of Shamir’s LSSS (no verifiable!)

in [CDM00]→ generalization of the previous schemes:

I it works for more general LSSS;
I only secrets of length 1;
I it has communication complexity O(n)

(n is the number of the players).

our construction → verifiable, works for general LSSS, secrets of any
length

Compact VSS and Efficient Homomorphic UC Commitments 7 / 21

Our construction from LSSS to VSS:

(t, r)-LSSS for secret s ∈ F` ⇒ (t, r)-VSS for secrets
{s1, . . . , s`} ⊆ F`

field elements shared communication complexity

LSSS ` Θ(n)

VSSS `2 Θ(n2)

Assuming ` = Θ(n), constant rate!

Compact VSS and Efficient Homomorphic UC Commitments 8 / 21

Sharing Phase in our VSS

Secrets {s1, . . . , s`} ⊆ F`, LSSS-matrix M with rows mi

D chooses F =

secrets

| . . . | ∗ ∗

s1 . . . s`
...

...
| . . . | ∗ ∗
∗ . . . ∗ ∗ . . . ∗
...

...
...

...
∗ . . . ∗ ∗ . . . ∗


← randomness

← randomness

D computes gi = mi ·F (row vector) and hi = F ·m>i (column vector)

mi
↑

public

· hj

↑
Pj

= gi
↑
Pi

·m>j
↑

public

Compact VSS and Efficient Homomorphic UC Commitments 9 / 21

Our construction from LSSS to VSS: extensions

(strong) multiplication property inherited from the LSSS;

checking a public linear relation between the secrets;

D shares s and s′, the players can check if ϕ(s) = s′

(ϕ public linear map)

generate shares of 0 ∈ F`

Compact VSS and Efficient Homomorphic UC Commitments 10 / 21

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with

t-strong multiplication

|F| constant

t, ` = Θ(n)

VSS =⇒ MPC protocol for a circuit C over any field
I UC perfectly secure in the client/server model;
I C is well-formed → comm. compl. O(|C |log |C |);
I C is regular → comm. compl. O(|C |).

[DIKNS08, DIK10] → similar result but with |F| ≥ n

UC Commitment Scheme!

Compact VSS and Efficient Homomorphic UC Commitments 11 / 21

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with

t-strong multiplication

|F| constant

t, ` = Θ(n)

VSS =⇒ MPC protocol for a circuit C over any field
I UC perfectly secure in the client/server model;
I C is well-formed → comm. compl. O(|C |log |C |);
I C is regular → comm. compl. O(|C |).

[DIKNS08, DIK10] → similar result but with |F| ≥ n

UC Commitment Scheme!

Compact VSS and Efficient Homomorphic UC Commitments 11 / 21

Commitment Scheme:

Commit
Phase:

Open
Phase:

Sender

put the secret s ∈ F`

in a locked box

Receiver

store
the box

open
the box

Hiding property: a corrupted receiver has no info on the secret
contained in a locked box sent by an honest sender
Binding property: a corrupted sender can not change secret, after
having sent the box to an honest receiver

Compact VSS and Efficient Homomorphic UC Commitments 12 / 21

Commitment Scheme:

Commit
Phase:

Open
Phase:

Sender

put the secret s ∈ F`

in a locked box

Receiver

store
the box

open
the box

Hiding property: a corrupted receiver has no info on the secret
contained in a locked box sent by an honest sender

Binding property: a corrupted sender can not change secret, after
having sent the box to an honest receiver

Compact VSS and Efficient Homomorphic UC Commitments 12 / 21

Commitment Scheme:

Commit
Phase:

Open
Phase:

Sender

put the secret s ∈ F`

in a locked box

Receiver

store
the box

open
the box

Hiding property: a corrupted receiver has no info on the secret
contained in a locked box sent by an honest sender

Binding property: a corrupted sender can not change secret, after
having sent the box to an honest receiver

Compact VSS and Efficient Homomorphic UC Commitments 12 / 21

Previous Commitment Schemes:

stand-alone model:
one-way function ⇒ commitment schemes
PRG ⇒ very efficient commitment scheme [Nao91]

UC model:
UC commitments need set-up assumptions [CF01]. Up to this year:

Most efficient UC commitments [Lin11,BCPV13] requires
exponentiations in DDH groups. Ω(`3) comp. complexity.

Independent work in Eurocrypt 2014 [GIKW14]:

optimal communication rate

public-key crypto only in the setup phase

relies specifically on [FY92] (packed Shamir’s LSSS)

no homomorphic properties

Compact VSS and Efficient Homomorphic UC Commitments 13 / 21

Our Commitment Scheme:

public-key crypto only in the setup phase

additively homomorphic and check multiplicative relations between
commitments

based on general LSSS

Amortized complexity: to commit to a message of length `

Sender Receiver Comm. Compl.

Shamir LSSS O(` · polylog(`)) O(` · polylog(`)) O(` · polylog(`))

AG LSSS O(`1+ε) O(`) O(`)

assuming efficient PRG [VZ12]

Compact VSS and Efficient Homomorphic UC Commitments 14 / 21

Our Commitment Scheme, the idea:

Commit Phase on input {s1, . . . , s`} ⊆ F`:

(Step 1)

Sender Receiver

choose a random
W = {i1, . . . , it}

(watchlist)

(r , t)-VSS on s1, . . . , s`

−→ C =

 | . . . |
c1 . . . c`
| . . . |



ci −→ verifiable share vector for the secret si

row j of C −→ view of Pj in the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments 15 / 21

Our Commitment Scheme, the idea:

Commit Phase on input {s1, . . . , s`} ⊆ F`:

(Step 1)

Sender Receiver

choose a random
W = {i1, . . . , it}

(watchlist)

(r , t)-VSS on s1, . . . , s`

−→ C =

 | . . . |
c1 . . . c`
| . . . |



ci −→ verifiable share vector for the secret si

row j of C −→ view of Pj in the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments 15 / 21

Our Commitment Scheme, the idea:

Commit Phase (Step 2)

Sender Receiver

t-out-of-n OT

 | . . . |
c1 . . . c`
| . . . |



row i1, . . . ,row it

W = {i1, . . . , it}

check the t shares
as the players in
the VSS scheme

Hiding property
the receiver sees only t shares →
no info on the secrets si

(t-privacy)

Compact VSS and Efficient Homomorphic UC Commitments 16 / 21

Our Commitment Scheme, the idea:

Commit Phase (Step 2)

Sender Receiver

t-out-of-n OT

 | . . . |
c1 . . . c`
| . . . |



row i1, . . . ,row it

W = {i1, . . . , it}

check the t shares
as the players in
the VSS scheme

Hiding property
the receiver sees only t shares →
no info on the secrets si

(t-privacy)

Compact VSS and Efficient Homomorphic UC Commitments 16 / 21

Our Commitment Scheme, the idea:

Commit Phase (Step 2)

Sender Receiver

t-out-of-n OT

 | . . . |
c1 . . . c`
| . . . |



row i1, . . . ,row it

W = {i1, . . . , it}

check the t shares
as the players in
the VSS scheme

Hiding property
the receiver sees only t shares →
no info on the secrets si

(t-privacy)

Compact VSS and Efficient Homomorphic UC Commitments 16 / 21

Our Commitment Scheme, the idea:

Open Phase for the secret si

Sender Receiver

check
c′i [j] = ci [j]

for j ∈W

accept/reject

c′i

W −→ watchlist from the Commit Phase

ci −→ share vector from the Commit Phase

ci

′

=



∗
∗
∗
∗
∗
∗
∗
∗



Binding property

VSS checks ⇒ in ci there are n− ε consistent shares

r -reconstruction ⇒ S has to change
≥ n(1− ε)− r + 1 shares

S doesn’t know W ⇒ R sees one of the changes
except with negl. prob.

Compact VSS and Efficient Homomorphic UC Commitments 17 / 21

Our Commitment Scheme, the idea:

Open Phase for the secret si

Sender Receiver

check
c′i [j] = ci [j]

for j ∈W

accept/reject

c′i

W −→ watchlist from the Commit Phase

ci −→ share vector from the Commit Phase
ci

′

=



∗
∗
∗
∗
∗
∗
∗
∗



Binding property

VSS checks ⇒ in ci there are n− ε consistent shares

r -reconstruction ⇒ S has to change
≥ n(1− ε)− r + 1 shares

S doesn’t know W ⇒ R sees one of the changes
except with negl. prob.

Compact VSS and Efficient Homomorphic UC Commitments 17 / 21

Our Commitment Scheme, the idea:

Open Phase for the secret si

Sender Receiver

check
c′i [j] = ci [j]

for j ∈W

accept/reject

c′i

W −→ watchlist from the Commit Phase

ci −→ share vector from the Commit Phase
ci

′
=



∗
∗
∗
∗
∗
∗
∗
∗



Binding property

VSS checks ⇒ in ci there are n− ε consistent shares

r -reconstruction ⇒ S has to change
≥ n(1− ε)− r + 1 shares

S doesn’t know W ⇒ R sees one of the changes
except with negl. prob.

Compact VSS and Efficient Homomorphic UC Commitments 17 / 21

Our Commitment Scheme, the idea:

Open Phase for the secret si

Sender Receiver

check
c′i [j] = ci [j]

for j ∈W

accept/reject

c′i

W −→ watchlist from the Commit Phase

ci −→ share vector from the Commit Phase
ci

′
=



∗
∗
∗
∗
∗
∗
∗
∗



Binding property

VSS checks ⇒ in ci there are n− ε consistent shares

r -reconstruction ⇒ S has to change
≥ n(1− ε)− r + 1 shares

S doesn’t know W ⇒ R sees one of the changes
except with negl. prob.

Compact VSS and Efficient Homomorphic UC Commitments 17 / 21

Our Commitment Scheme, the implementation:

Pre-processing: independent of the input, public-key

t-out-of-n OT on seeds {x1, . . . , xn} for a PRG [VZ12]

Run the VSS with random strings {r1, . . . , r`} as input and send
rowi + PRG (xi) for all i

On-line: field arithmetic, non-interactive

Commit: Send s + rj

Reveal: Send all the shares for rj

Compact VSS and Efficient Homomorphic UC Commitments 18 / 21

Our Commitment Scheme: extensions

additive homomorphism

i.e. given c (commitment to s), c′ (commitment to s′)
c + c′ is a commitment to s + s′

the receiver can check multiplicative relations

i.e. given c (commitment to s), c′ (commitment to s′) and d
check that d is a commitment to s · s′

given a commitment of s −→ compute a commitment for ϕ(s)
(ϕ is a public linear map)

Compact VSS and Efficient Homomorphic UC Commitments 19 / 21

Our Commitment Scheme: extensions

additive homomorphism

i.e. given c (commitment to s), c′ (commitment to s′)
c + c′ is a commitment to s + s′

the receiver can check multiplicative relations

i.e. given c (commitment to s), c′ (commitment to s′) and d
check that d is a commitment to s · s′

given a commitment of s −→ compute a commitment for ϕ(s)
(ϕ is a public linear map)

Compact VSS and Efficient Homomorphic UC Commitments 19 / 21

Our Commitment Scheme: extensions

additive homomorphism

i.e. given c (commitment to s), c′ (commitment to s′)
c + c′ is a commitment to s + s′

the receiver can check multiplicative relations

i.e. given c (commitment to s), c′ (commitment to s′) and d
check that d is a commitment to s · s′

given a commitment of s −→ compute a commitment for ϕ(s)
(ϕ is a public linear map)

Compact VSS and Efficient Homomorphic UC Commitments 19 / 21

Our Commitment Scheme: applications

Efficient non-interactive UC ZK proof of knowledge for any NP relations
[DIK10]

Prover

Verifier

Verify relations between
commitments;

Check opening of commitment
to output R;

if C is regular → O(|C |) complexity!

Compact VSS and Efficient Homomorphic UC Commitments 20 / 21

Recap:

We presented a compact VSS that:

generalizes the construction of [CDM00] for packed LSSS;

multiplication property and non-trivial extensions;

constant communication rate;

The VSS scheme is used to design a UC-commitment scheme that:

allows many commitments from a fixed number of seed OTs of fixed
length and a PRG;

non-interactive commit and open phases requiring only field
arithmetic (linear complexity for the receiver!);

additive and multiplicative homomorphism.

Thanks for your attention!

Compact VSS and Efficient Homomorphic UC Commitments 21 / 21

