ASIACRYPT 2014

Compact VSS and Efficient Homomorphic UC
Commitments

Ivan Damgérd, Bernardo David, Irene Giacomelli and Jesper B. Nielsen

Aarhus University

O IN
K P,

Compact VSS and Efficient Homomorphic UC Commitments 1/21

Road-map:

@ Verifiable Secret-Sharing Scheme (VSS)

@ Homomorphic UC Commitment Scheme

Compact VSS and Efficient Homomorphic UC Commitments

Road-map:

@ Verifiable Secret-Sharing Scheme (VSS)

> based on any Linear Secret-Sharing Scheme (LSSS);
» compact: many secrets shared in one execution
— communication rate O(1);

@ Homomorphic UC Commitment Scheme

Compact VSS and Efficient Homomorphic UC Commitments 2/21

Road-map:

@ Verifiable Secret-Sharing Scheme (VSS)

> based on any Linear Secret-Sharing Scheme (LSSS);
» compact: many secrets shared in one execution
— communication rate O(1);

@ Homomorphic UC Commitment Scheme

» based on the VSS in a “MPC-in-the-head” setting [IKOS07, IPS08];
> designed in the OT-hybrid model using preprocessing;
» efficient: — linear comput. complexity for the receiver.

Compact VSS and Efficient Homomorphic UC Commitments 2/21

Packed Linear Secret-Sharing Scheme among n players
Sharing Phase:

dealer D share ¢; € F to player Py

secret

share c; € F to player P;
SG]FE 2 play 2

share ¢, € I to player P,

Reconstruction Phase:

share ¢ € F
share c; € F
. — sseF*

share ¢, € F

Compact VSS and Efficient Homomorphic UC Commitments 3/21

Packed Linear Secret-Sharing Scheme among n players

Sharing Phase: t-privacy

Any set of at most
t shares gives no

secret h | p info on s
share ¢ € T to player P;
s e’ Y

dealer D share ¢; € F to player Py

r-reconstruction
Any set of at least
r shares fully
determines s

share ¢, € I to player P,

Reconstruction Phase:

share g € F

share ¢, € F 1<t<r<n
. ——+sel

share .c,, eF { = secret length

(¢>1)

Compact VSS and Efficient Homomorphic UC Commitments 3/21

Sharing Phase in LSSS:

LSSS «— a n x (¢ + e) public matrix M J

Compact VSS and Efficient Homomorphic UC Commitments

Sharing Phase in LSSS:

LSSS «— a n x (¢ + e) public matrix M)

< the secret, column vector in F*

<— the randomness, column vector in F¢

\

s

@ D chooses f = l
v

|

c[1]
@ D computes |

=M - f and sends c[i] to P;
c[n]

Compact VSS and Efficient Homomorphic UC Commitments

Security: the players’ point of view

What happens if the dealer is not honest?!

dishonest dealer share c; to player P;
secret
277 share & to player Pp
share ¢, to player P,
share ¢, € F share ¢, € F
share ¢;, € IF share ¢;, € IF
— s sel¢ . — > §eF¢

share ¢;, € F share ¢, € F

Compact VSS and Efficient Homomorphic UC Commitments 5/21

Definition of VSS Scheme [CGMAS85]

A (t, r)-LSSS among n players is verifiable if

@ t-privacy: no info
from t shares
Pi
Pi
— 7

Pi

t

Compact VSS and Efficient Homomorphic UC Commitments

Definition of VSS Scheme [CGMAB85]
A (t, r)-LSSS among n players is verifiable if

@ r-robust reconstruction: when the
dealer is corrupt,

e t-privacy: no info the sharing phase succeeds
from t shares 3|2
p any set of r honest players reconstruct
p. the same secret
R
: Forany{i1,...,ir}7é{j1,...,j,}, if
P,
P Pj,
P"Z A 'Dj2 ~ v
—rselF and . —8cF
pi, P,

Compact VSS and Efficient Homomorphic UC Commitments 6 /21

Known constructions from LSSS to VSS

in [BGW88] — verifiable version of Shamir's LSSS
(only secrets of length 1)

in [FY92] — packed version of Shamir's LSSS (no verifiable!)

in [CDMO00]— generalization of the previous schemes:

» it works for more general LSSS;

» only secrets of length 1;

> it has communication complexity O(n)
(n is the number of the players).

@ our construction — verifiable, works for general LSSS, secrets of any J
length

Compact VSS and Efficient Homomorphic UC Commitments 7/21

Our construction from LSSS to VSS:

(t, r)-LSSS for secret s € F* = (t, r)-VSS for secrets
{Sla"'ase} C]FZ

field elements shared | communication complexity
LSSS l ©(n)
VSSS 2 o(n?)

Assuming ¢ = ©(n), constant rate!

Compact VSS and Efficient Homomorphic UC Commitments 8/21

Sharing Phase in our VSS

Secrets {sy,...,s;} C F¢, LSSS-matrix M with rows m;

secrets
| | * *
S1 ... Sy . | ¢ randomness
@ D chooses F = | -
* * ok
<— randomness
* * ok *

o D computes g; = m; - F (row vector) and h’ = F-m (column vector)

j T

m; -W=g;- m;
Tl

public Pj Pi public

Compact VSS and Efficient Homomorphic UC Commitments 9/21

Our construction from LSSS to VSS: extensions

@ (strong) multiplication property inherited from the LSSS;

@ checking a public linear relation between the secrets;

D shares s and s/, the players can check if ¢(s) = ¢’

(o public linear map)

@ generate shares of 0 € F¢

Compact VSS and Efficient Homomorphic UC Commitments 10 / 21

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with
t-strong multiplication
|F| constant

t, =0(n)

VsSS = @ MPC protocol for a circuit C over any field

» UC perfectly secure in the client/server model;
» C is well-formed — comm. compl. O(|C|log|C|);
» C is regular — comm. compl. O(|C)).

[DIKNS08, DIK10] — similar result but with |F| > n

Compact VSS and Efficient Homomorphic UC Commitments 11 /21

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with
t-strong multiplication
|F| constant

t, =0(n)

VsSS = @ MPC protocol for a circuit C over any field

» UC perfectly secure in the client/server model;
» C is well-formed — comm. compl. O(|C|log|C|);
» C is regular — comm. compl. O(|C)).

[DIKNS08, DIK10] — similar result but with |F| > n

@ UC Commitment Schemel

Compact VSS and Efficient Homomorphic UC Commitments 1 /21

Commitment Scheme:

put the secret s € F¢

Commit in a locked box

Phase:
_ store
" the box

Open ’&K

Phase: _ open
" the box

Compact VSS and Efficient Homomorphic UC Commitments

Commitment Scheme:

put the secret s € F¢
Commit in a locked box

Phase: %

_ store
" the box
Eaeh

Open RN
Phase: . open

" the box
o Hiding property: a corrupted receiver has no info on the secret

contained in a locked box sent by an honest sender

Compact VSS and Efficient Homomorphic UC Commitments 12 /21

Commitment Scheme:

put the secret s € F¢
Commit in a locked box

Phase: %

. store
" the box
Open U?\
Phase: N . open
" the box

o Binding property: a corrupted sender can not change secret, after
having sent the box to an honest receiver

Compact VSS and Efficient Homomorphic UC Commitments 12 /21

Previous Commitment Schemes:

stand-alone model:
one-way function = commitment schemes
PRG = very efficient commitment scheme [Nao91]

UC model:
UC commitments need set-up assumptions [CFO1]. Up to this year:

@ Most efficient UC commitments [Lin11,BCPV13] requires
exponentiations in DDH groups. Q(¢3) comp. complexity.

Independent work in Eurocrypt 2014 [GIKW14]:
@ optimal communication rate
@ public-key crypto only in the setup phase

o relies specifically on [FY92] (packed Shamir's LSSS)
@ no homomorphic properties

Compact VSS and Efficient Homomorphic UC Commitments 13 /21

Our Commitment Scheme:

public-key crypto only in the setup phase

additively homomorphic and check multiplicative relations between
commitments

@ based on general LSSS
@ Amortized complexity: to commit to a message of length ¢
‘ Sender ‘ Receiver H Comm. Compl.
Shamir LSSS | O(¢ - polylog(¢)) | O(¢ po/y/og O(£ - polylog(£))
AG LSSS Oo(0++e) 0o(9)

assuming efficient PRG [VZ12]

Compact VSS and Efficient Homomorphic UC Commitments 14 /21

Our Commitment Scheme, the idea:

Commit Phase on input {sy,...,s,} C F"

(Step 1)
(r,t)-VSS onsy,...,s¢
|
—C=c ... ¢

c; — verifiable share vector for the secret s;

row j of C — view of P; in the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments 15 /21

Our Commitment Scheme, the idea:

Commit Phase on input {sy,...,s,} C F"

(Step 1)
(r,t)-VSS onsy,...,s¢ choose a random
| | W:{i]_,...,it}
c=|q < (watchlist)

c; — verifiable share vector for the secret s;

row j of C — view of P; in the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments 15 /21

Our Commitment Scheme, the idea:
Commit Phase (Step 2)

a ... ¢ W= (i)

—— > t-out-of-n OT

\/rc;w 1,...,FOW It

Compact VSS and Efficient Homomorphic UC Commitments

Our Commitment Scheme, the idea:
Commit Phase (Step 2)

... W= (i)

—— > t-out-of-n OT

\/rc|>w 1,...,FOW It

check the t shares
as the players in
the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments 16 / 21

Our Commitment Scheme, the idea:

Commit Phase (Step 2)

Receiver

ci ... C

—— > t-out-of-n OT

V= (i)

Hiding property
the receiver sees only t shares —
no info on the secrets s;

(t-privacy)

\/rc|>w 1,...,FOW It

check the t shares
as the players in
the VSS scheme

Compact VSS and Efficient Homomorphic UC Commitments

16 / 21

Our Commitment Scheme, the idea:

Open Phase for the secret s;

check
ci[j] = cilJ]
for je W

accept/reject

W — watchlist from the Commit Phase

c; — share vector from the Commit Phase

Compact VSS and Efficient Homomorphic UC Commitments 17 /21

Our Commitment Scheme, the idea:

Open Phase for the secret s;

check
ci[j] = cilJ]
for je W

Binding property

@ VSS checks = in c; there are n — € consistent shares

EE R T R S

Compact VSS and Efficient Homomorphic UC Commitments 17 /21

Our Commitment Scheme, the idea:

Open Phase for the secret s;

check
c;[j] = cilJ]
for je W
Binding property
@ VSS checks = in c; there are n — € consistent shares

@ r-reconstruction = S has to change
> n(1 —¢€) —r+1 shares

e}
Il
A

Compact VSS and Efficient Homomorphic UC Commitments 17 /21

Our Commitment Scheme, the idea:

Open Phase for the secret s;

check
c;[j] = cilJ]
for je W
Binding property
@ VSS checks = in c; there are n — € consistent shares

@ r-reconstruction = S has to change
> n(1 —¢€) —r+1 shares

@ S doesn't know W = R sees one of the changes
except with negl. prob.

E I S G O O I S

Compact VSS and Efficient Homomorphic UC Commitments 17 /21

Our Commitment Scheme, the implementation:

Pre-processing: independent of the input, public-key

e t-out-of-n OT on seeds {xi1,...,xp} for a PRG [VZ12]

@ Run the VSS with random strings {ri,...,r/} as input and send
row; + PRG(x;) for all i

On-line: field arithmetic, non-interactive

o Commit: Send s +r;

@ Reveal: Send all the shares for r;

Compact VSS and Efficient Homomorphic UC Commitments 18 / 21

Our Commitment Scheme: extensions

@ additive homomorphism

i.e. given ¢ (commitment to s), ¢’ (commitment to s’)
c+ ¢’ is a commitment to s + s’

Compact VSS and Efficient Homomorphic UC Commitments

Our Commitment Scheme: extensions

@ additive homomorphism

i.e. given ¢ (commitment to s), ¢’ (commitment to s’)
c+ ¢’ is a commitment to s + s’

@ the receiver can check multiplicative relations

i.e. given ¢ (commitment to s), ¢/ (commitment to s’) and d
check that d is a commitment to s - s’

Compact VSS and Efficient Homomorphic UC Commitments 19 /21

Our Commitment Scheme: extensions

@ additive homomorphism

i.e. given ¢ (commitment to s), ¢’ (commitment to s’)
c+c is a commitment to s +§’

@ the receiver can check multiplicative relations
i.e. given ¢ (commitment to s), ¢/ (commitment to s’) and d

check that d is a commitment to s - s’

@ given a commitment of s — compute a commitment for ¢(s)
(¢ is a public linear map)

Compact VSS and Efficient Homomorphic UC Commitments 19 /21

Our Commitment Scheme: applications

Efficient non-interactive UC ZK proof of knowledge for any NP relations
[DIK10]

Prover
Verifier
Commit Corlnmit Commit
X1 . -
[a]s o Verify relations between
(=] o]

commitments;

)
o

@ Check opening of commitment
to output R;

Circuit C checking relation:
C(x)=L1 if relation holds

if C is regular — O(|C|) complexity!

Compact VSS and Efficient Homomorphic UC Commitments 20 /21

Recap:

We presented a compact VSS that:
@ generalizes the construction of [CDMO00] for packed LSSS;
@ multiplication property and non-trivial extensions;

@ constant communication rate;

The VSS scheme is used to design a UC-commitment scheme that:

@ allows many commitments from a fixed number of seed OTs of fixed
length and a PRG;

@ non-interactive commit and open phases requiring only field
arithmetic (linear complexity for the receiver!);

@ additive and multiplicative homomorphism.

Thanks for your attention!

Compact VSS and Efficient Homomorphic UC Commitments 21 /21

