

ASIACRYPT 2014

Compact VSS and Efficient Homomorphic UC Commitments

Ivan Damgård, Bernardo David, Irene Giacomelli and Jesper B. Nielsen

Compact VSS and Efficient Homomorphic UC Commitments

Road-map:

• Verifiable Secret-Sharing Scheme (VSS)

2 Homomorphic UC Commitment Scheme

Road-map:

• Verifiable Secret-Sharing Scheme (VSS)

- based on any Linear Secret-Sharing Scheme (LSSS);
- compact: many secrets shared in one execution

 \rightarrow communication rate O(1);

@ Homomorphic UC Commitment Scheme

Road-map:

• Verifiable Secret-Sharing Scheme (VSS)

- based on any Linear Secret-Sharing Scheme (LSSS);
- compact: many secrets shared in one execution
 - \rightarrow communication rate O(1);

2 Homomorphic UC Commitment Scheme

- based on the VSS in a "MPC-in-the-head" setting [IKOS07, IPS08];
- designed in the OT-hybrid model using preprocessing;
- efficient: \rightarrow linear comput. complexity for the receiver.

Packed Linear Secret-Sharing Scheme among *n* players

Sharing Phase:

Reconstruction Phase:

$$\left.\begin{array}{l} \text{share } c_1 \in \mathbb{F} \\ \text{share } c_2 \in \mathbb{F} \\ \vdots \\ \text{share } c_n \in \mathbb{F} \end{array}\right\} \longrightarrow \mathbf{s} \in \mathbb{F}^{\ell}$$

Packed Linear Secret-Sharing Scheme among *n* players

Sharing Phase:

t-privacy

Any set of at most t shares gives no info on **s**

r-reconstruction Any set of at least *r* shares fully determines **s**

Reconstruction Phase:

$$\left.\begin{array}{l} \mathsf{share} \ c_1 \in \mathbb{F} \\ \mathsf{share} \ c_2 \in \mathbb{F} \\ \vdots \\ \mathsf{share} \ c_n \in \mathbb{F} \end{array}\right\} \longrightarrow \mathsf{s} \in \mathbb{F}^\ell$$

 $1 \le t < r \le n$

$$\ell = {
m secret \ length} \ (\ell > 1)$$

Sharing Phase in LSSS:

LSSS \longleftrightarrow a $n \times (\ell + e)$ public matrix **M**

Sharing Phase in LSSS:

■ *D* chooses
$$\mathbf{f} = \begin{pmatrix} | \\ \mathbf{s} \\ | \\ | \\ \mathbf{v} \\ | \end{pmatrix} \leftarrow$$
 the secret, column vector in \mathbb{F}^{ℓ}
← the randomness, column vector in $\mathbb{F}^{\mathbf{r}}$
⇒ *D* computes $\begin{pmatrix} \mathbf{c}[1] \\ | \\ \mathbf{c}[n] \end{pmatrix} = \mathbf{M} \cdot \mathbf{f}$ and sends $\mathbf{c}[i]$ to P_i

Security: the players' point of view

What happens if the dealer is not honest?!

Definition of VSS Scheme [CGMA85]

A (t, r)-LSSS among *n* players is verifiable if

• *t*-**privacy**: no info from *t* shares

$$\left. \begin{array}{c} P_{i_1} \\ P_{i_2} \\ \vdots \\ P_{i_t} \end{array} \right\} \longrightarrow ?$$

Definition of VSS Scheme [CGMA85]

A (t, r)-LSSS among *n* players is **verifiable** if

• *t*-**privacy**: no info from *t* shares

r-robust reconstruction: when the dealer is corrupt,
 the sharing phase succeeds

any set of r honest players reconstruct the same secret

For any $\{i_1, \ldots, i_r\} \neq \{j_1, \ldots, j_r\}$, if

$$\left. \begin{array}{c} \mathsf{P}_{i_1} \\ \mathsf{P}_{i_2} \\ \vdots \\ \mathsf{P}_{i_r} \end{array} \right\} \longrightarrow \mathbf{s} \in \mathbb{F}^{\ell} \qquad \text{and} \qquad \begin{array}{c} \mathsf{P}_{j_1} \\ \mathsf{P}_{j_2} \\ \vdots \\ \mathsf{P}_{i_r} \end{array} \right\} \longrightarrow \mathbf{\tilde{s}} \in \mathbb{F}^{\ell}$$

 \Longrightarrow s = \tilde{s}

Known constructions from LSSS to VSS

- in [BGW88] \rightarrow verifiable version of Shamir's LSSS (only secrets of length 1!)
- in [FY92] \rightarrow packed version of Shamir's LSSS (no verifiable!)
- in [CDM00] \rightarrow generalization of the previous schemes:
 - it works for more general LSSS;
 - only secrets of length 1;
 - it has communication complexity O(n)
 (n is the number of the players).

$\bullet \ \underline{our \ construction} \rightarrow verifiable,$ works for general LSSS, secrets of any length

Our construction from LSSS to VSS:

$$(t, r)$$
-LSSS for secret $\mathbf{s} \in \mathbb{F}^{\ell} \Rightarrow (t, r)$ -VSS for secrets
 $\{\mathbf{s}_1, \dots, \mathbf{s}_{\ell}\} \subseteq \mathbb{F}^{\ell}$

	field elements shared	communication complexity
LSSS	l	$\Theta(n)$
VSSS	ℓ^2	$\Theta(n^2)$

Assuming $\ell = \Theta(n)$, constant rate!

Compact VSS and Efficient Homomorphic UC Commitments

Sharing Phase in our VSS

Secrets $\{s_1,\ldots,s_\ell\}\subseteq \mathbb{F}^\ell,$ LSSS-matrix $\boldsymbol{\mathsf{M}}$ with rows $\boldsymbol{\mathsf{m}}_i$

• *D* computes $\mathbf{g}_i = \mathbf{m}_i \cdot \mathbf{F}$ (row vector) and $\mathbf{h}^i = \mathbf{F} \cdot \mathbf{m}_i^{\top}$ (column vector)

$$\mathbf{m}_{i} \cdot \mathbf{h}^{j} = \mathbf{g}_{i} \cdot \mathbf{m}_{j}^{\top}$$

$$\uparrow_{public} \stackrel{\uparrow}{P_{j}} \stackrel{\uparrow}{P_{i}} \stackrel{\uparrow}{P_{i}}$$

Our construction from LSSS to VSS: extensions

- (strong) multiplication property inherited from the LSSS;
- checking a <u>public linear relation</u> between the secrets; D shares **s** and **s**', the players can check if $\varphi(\mathbf{s}) = \mathbf{s}'$ (φ public linear map)
- generate shares of $\bm{0} \in \mathbb{F}^\ell$

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with

t-strong multiplication

 $|\mathbb{F}|$ constant

 $t,\ell=\Theta(n)$

VSS

- MPC protocol for a circuit C over any field
 - UC perfectly secure in the client/server model;
 - *C* is well-formed \rightarrow comm. compl. $O(|C|\log|C|)$;
 - C is regular \rightarrow comm. compl. O(|C|).

 $[\mathsf{DIKNS08}, \,\mathsf{DIK10}] o \mathsf{similar}$ result but with $|\mathbb{F}| \ge n$

Our construction from LSSS to VSS: applications

Given an underlying LSSS [CCCX09] with

t-strong multiplication

 $|\mathbb{F}|$ constant

 $t,\ell=\Theta(n)$

VSS

• MPC protocol for a circuit C over any field

- UC perfectly secure in the client/server model;
- C is well-formed \rightarrow comm. compl. $O(|C|\log|C|)$;
- C is regular \rightarrow comm. compl. O(|C|).

 $[\mathsf{DIKNS08},\,\mathsf{DIK10}] \to \mathsf{similar}$ result but with $|\mathbb{F}| \geq n$

• UC Commitment Scheme!

Commitment Scheme:

Commitment Scheme:

• **Hiding property**: a corrupted receiver has no info on the secret contained in a locked box sent by an honest sender

Commitment Scheme:

• **Binding property**: a corrupted sender can not change secret, after having sent the box to an honest receiver

Previous Commitment Schemes:

stand-alone model:

one-way function \Rightarrow commitment schemes PRG \Rightarrow very efficient commitment scheme [Nao91]

UC model:

UC commitments need set-up assumptions [CF01]. Up to this year:

• Most efficient UC commitments [Lin11,BCPV13] requires exponentiations in DDH groups. $\Omega(\ell^3)$ comp. complexity.

Independent work in Eurocrypt 2014 [GIKW14]:

- optimal communication rate
- public-key crypto only in the setup phase
- relies specifically on [FY92] (packed Shamir's LSSS)
- no homomorphic properties

Our Commitment Scheme:

- public-key crypto only in the setup phase
- additively homomorphic and check <u>multiplicative</u> relations between commitments
- based on general LSSS
- \bullet Amortized complexity: to commit to a message of length ℓ

	Sender	Receiver	Comm. Compl.
Shamir LSSS	$O(\ell \cdot polylog(\ell))$	$O(\ell \cdot polylog(\ell))$	$O(\ell \cdot polylog(\ell))$
AG LSSS	$O(\ell^{1+\epsilon})$	$O(\ell)$	<i>O</i> (<i>ℓ</i>)

assuming efficient PRG [VZ12]

Commit Phase on input $\{\boldsymbol{s}_1,\ldots,\boldsymbol{s}_\ell\}\subseteq \mathbb{F}^\ell$:

(Step 1)

 $\mathbf{c}_i \longrightarrow verifiable$ share vector for the secret \mathbf{s}_i row j of $\mathbf{C} \longrightarrow$ view of P_i in the VSS scheme

Commit Phase on input $\{\boldsymbol{s}_1,\ldots,\boldsymbol{s}_\ell\}\subseteq \mathbb{F}^\ell$:

(Step 1)

 $\mathbf{c}_i \longrightarrow verifiable$ share vector for the secret \mathbf{s}_i row j of $\mathbf{C} \longrightarrow$ view of P_j in the VSS scheme

Commit Phase (Step 2)

Commit Phase (Step 2)

check the *t* shares as the players in the VSS scheme

Commit Phase (Step 2)

Open Phase for the secret \mathbf{s}_i

$W \longrightarrow$ watchlist from the Commit Phase $\mathbf{c}_i \longrightarrow$ share vector from the Commit Phase

Open Phase for the secret \mathbf{s}_i

Compact VSS and Efficient Homomorphic UC Commitments

Open Phase for the secret \mathbf{s}_i

Open Phase for the secret \mathbf{s}_i

Our Commitment Scheme, the implementation:

Pre-processing: independent of the input, public-key

- *t*-out-of-*n* OT on seeds $\{x_1, \ldots, x_n\}$ for a PRG [VZ12]
- Run the VSS with random strings {r₁,..., r_l} as input and send row_i + PRG(x_i) for all i

On-line: field arithmetic, non-interactive

- Commit: Send $\mathbf{s} + \mathbf{r}_j$
- Reveal: Send all the shares for **r**_j

Our Commitment Scheme: extensions

• additive homomorphism

i.e. given c (commitment to $s), \, c'$ (commitment to $s') \\ c+c'$ is a commitment to s+s'

Our Commitment Scheme: extensions

• additive homomorphism

i.e. given c (commitment to $s), \, c'$ (commitment to $s') \\ c+c'$ is a commitment to s+s'

• the receiver can check multiplicative relations

i.e. given c (commitment to $s), \, c'$ (commitment to s') and d check that d is a commitment to $s \cdot s'$

Our Commitment Scheme: extensions

• additive homomorphism

i.e. given c (commitment to $s), \, c'$ (commitment to $s') \\ c+c'$ is a commitment to s+s'

• the receiver can check multiplicative relations

i.e. given c (commitment to $s), \, c'$ (commitment to s') and d check that d is a commitment to $s \cdot s'$

• given a commitment of $\mathbf{s} \longrightarrow$ compute a commitment for $\varphi(\mathbf{s})$ (φ is a public linear map)

Our Commitment Scheme: applications

Efficient non-interactive UC ${\sf ZK}$ proof of knowledge for any NP relations [DIK10]

Prover

Verifier

- Verify relations between commitments;
- Check opening of commitment to output R;

if C is regular $\rightarrow O(|C|)$ complexity!

Recap:

We presented a **compact VSS** that:

- generalizes the construction of [CDM00] for packed LSSS;
- multiplication property and non-trivial extensions;
- constant communication rate;

The VSS scheme is used to design a **UC-commitment scheme** that:

- allows many commitments from a fixed number of seed OTs of fixed length and a PRG;
- non-interactive commit and open phases requiring only field arithmetic (linear complexity for the receiver!);
- additive and multiplicative homomorphism.

Thanks for your attention!